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Abstract 

The vertical structure equation is a singular Sturm-Liouville problem 

whose eigenfunctions describe the vertical dependence of the normal modes of 

the primitive equations linearized about a given thermal profile. The 

eigenvalues give the equivalent depths of the modes. We study the spectrum 

of the vertical structure equation and the appropriateness of various upper 

boundary conditions, both for arbitrary thermal profiles. Our results 

depend critically upon whether or not the thermal profile is such that the 

basic state atmosphere is bounded. 

In the case of a bounded atmosphere we show that the spectrum is 

always totally discrete, regardless of details of the thermal profile. For 

the barotropic equivalent depth, which corresponds to the lowest eigenvalue, 

we obtain upper and lower bounds which depend only on the surface 

temperature and the atmosphere height. All eigenfunctions are bounded, but 

always have unbounded first derivatives. We prove that the commonly invoked 

upper boundary condition that vertical velocity must vanish as pressure 

tends to zero, as well as a number of alternative conditions, is well posed. 

For unbounded atmospheres, on the other hand, we show that typically 

there is a continuous spectrum, the boundary condition of vanishing vertical 

velocity is not well posed, and the eigenfunctions, if any, are unbounded. 

We point out, however, that owing to the traditional shallowness 

approximations of the primitive equations, the vertical structure equation 

has no meaning for unbounded atmospheres. This leads to the conclusion that 

the vertical structure equation always has a totally discrete spectrum under 

the assumptions implicit in the primitive equations. 
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1. Introduction and Main Results 

Atmospheric normal modes play a central role in the theory of tidal 

motions of the atmosphere (Siebert, 1961; Chapman and Lindzen, 1970) and in 

the theory of planetary-scale traveling waves (Salby, 1984). Normal modes 

are also important in numerical weather prediction, where they are used to 

perform objective analysis (Flattery, 1970), to provide basis functions for 

spectral models (Kasahara, 1977), to initialize models (Daley, 1981), to 

represent global data (Kasahara and Puri, 1981), and to construct test 

solutions for models (Dee and da Silva, 1986). Recently normal modes have 

also been used as the basis of a stability theory for four-dimensional data 

assimilation methods (Cohn and Dee, 1986). 

The v) (VSE) is a Sturm-Liouville ordinary 

differential equation whose eigensolutions describe the vertical structure 

of the normal modes of the linearized primitive equations. Since the VSE is 

singular at the top boundary, where pressure vanishes, two fundamental 

questions are : 

. (A) What is the nature of the spectrum of the V S E ,  i.e., when is 

the spectrum totally discrete and when is there a continuous spectrum? 

(B) What boundary condition is appropriate at the top boundary? 

The basic state thermal profile appears in a coefficient of the VSE, and 

various authors have considered these two questions for particular choices 

of the thermal profile (Taylor, 1936; Dikii, 1965; Wiin-Nielsen, 1971; 

Staniforth et al., 1985). Our objective in this paper is to answer these 

questions for arbitrary profiles. 

Before summarizing results, we review the background and derivation of 

the VSE following Daley (1981) and Staniforth et al. (1985). In the usual 

rotating pressure coordinate system, the adiabatic, hydrostatic primitive 

equations linearized about a state of rest can be written as 
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Here u, v and w are the perturbation eastward, northward and vertical 

velocity components in pressure coordinates, and Q is the perturbation 

geopotential. The independent'variables are time t, pressure p, longitude X 

and latitude 4. The constants a and n are the earth's radius and rotation 

rate. The thermal structure of the basic state enters through the static 

stabilitv function 0 ,  

O) 
RTO d log B 

dP 
0 - o ( p )  - - (- P 
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(1.2a) 

(1.2b) 

(1.2c) 

where is the basic state temperature profile and B o  - Top-n is 
the corresponding potential temperature profile; R is the gas constant for 

dry air and n = R/cp, c 

To - TO(p) 

being the specific heat at constant pressure. 
P 

We take the domain of (1.1) to be global, and with pressure ranging 

from a constant surface value p = ps up to p = 0. The lower boundary 

condition for (1.1) corresponding to no mass flux through the earth's 

surface is 



( 1 . 3 )  

We do not yet specify an upper boundary condition. Note, however, that the 

time rate of change of total energy is given by 

. where dA is the horizontal area element, the triple integral is over the 

whole domain, and the double integral is over a spherical shell. Thus a 

boundary condition 

h + O  a s p + O  ( 1 . 5 )  

would guarantee energy conservation, while the commonly invoked condition 

w + O  as p + O  (1.6) 

does not necessarily conserve energy, because one does not know a Dr ior i 

whether @(t,X,4,p) is bounded for all time. 

Seeking separable solutions 

one obtains the vertical structure equation and lower boundary condition 

( U C )  
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along with the linear global shallow-water system 

A A 

(1. loa) 

(1. lob) 

(1.1Oc) 

whose solutions are the Houeh harmonics (Hough, 1898; Longuet-Higgins, 1968; 

Holl, 1970; Kasahara, 1976). Equations (1.8) and (1.10) are coupled through 

the separation constant p which appears as an eigenvalue in the VSE (1.8). 

The corresponding eauivalent deDth H is H = l/pg, g being the acceleration 

due to gravity. The vertical velocity w is obtained diagnostically as 

(1.11) 

The candidate boundary conditions (1.5) and (1.6) imply, respectively, that 

(1.12) 

or 

(1.13) 
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Staniforth et al. (1985) studied the VSE for the two-parameter family 

of static stability functions 

O(P> = Ap* , (1.14) 

where A > 0 and a are constants, which includes many of the static stability 

functions considered by previous authors. They showed that for the linear 

system (1.1) to be valid in the sense of the neglected nonlinear terms being 

smaller than the retained linear terms, it is necessary that a 1 2-IC. On 

the other hand, for TO(p) to be finite as p -* 0, they showed that a s 2. 

Hence they assumed that 

In case a < 2, they were able to solve the VSE explicitly in terms of Bessel 

functions. These solutions were used to show that the spectrum is totally 

discrete, i.e., there is an infinite sequence of eigenvalues p n’ 

for which there is a corresponding sequence of eigenfunctions x satisfying 

the VSE (1.8), the LBC (1.9), and the upper boundary condition (1.13). For 
n 

a = 2, which includes the much-studied isothermal case, they showed that 

there is at most one eigenvalue with corresponding eigenfunction satisfying 

(1.8,1.9,1.13), while the rest of the spectrum is continuous. 

The VSE is a singular Sturm-Liouville equation whenever the 

coefficient a(p) -b Q as p -+ 0; in particular it is singular for the family 

of profiles (1.14,l.U). The answer to questions ( A )  and (B), as well as 
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other qualitative aspects of solutions, depend solely on the rate at which 

~ ( p )  + m. More precisely, they depend only on the behavior of o(p), and 

hence on that of TO(p), in an arbitrarily small neighborhood of the singular 

point p - 0. For example, we w i l l  see that by modifying the isothermal 

profile near p - 0, the continuous spectrum becomes totally discrete. 
In analyzing the V S E ,  one must ensure that any assumptions on the 

asymptotic behavior of TO(p) are consistent with the assumptions implicit in 

the governing nonlinear primitive equations. Recall that the primitive 

equations are based on certain "shallowness" or "traditional" approximations 

(Phillips, 1966, 1973), in which gravity g (the magnitude of the resultant 

of the centrifugal and Newtonian gravitational forces) is taken to be 

constant and in which the metric factors are replaced by their values near 

the surface of the earth. These approximations break down for unbounded 

atmospheres. Therefore we can be assured that an analysis of the linearized 

system ( l . l ) ,  and therefore of the VSE, is meaningful only when the basic 

state atmosphere is bounded. 

Boundedness of the basic state atmosphere can in fact be expressed 

8s a condition on TO(p) near p - 0, as follows. Since the basic state is 

hydrostatic, the basic state geopotential a0 is given by 

P 
(1.17) 

cf. Staniforth et al. (1985, eq. 2.17). 

the domain is 

Hence the geopotential extent OE of 
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and the basic state atmosphere is bounded if and only if the limits in 

(1.18) exist and are finite, i.e. 

In particular, if TO(p) has a limit as p + 0 then a necessary 

the basic state atmosphere to be bounded is that in fact 

condition for 

for otherwise the integral in (1.19) would diverge at least logarithmically. 

In a recent PhD thesis (Sudarshan, 1985), the plausibility of condition 

(1.20) has also been argued for atmospheres in conductive equilibrium. 

Conditions (1.19) and (1.20) will be fundamental in our analysis. We 

will show in particular that (1.20) guarantees a totally discrete spectrum 

and that under the stronger condition (1.19), but not necessarily under 

(1.20), the boundary conditions (1.12) or (1,13), amongst others, are indeed 

appropriate. 

One might argue that neither of conditions (1.19) and (1.20) is 

physically reasonable. For example, the temperature of the thermospheric 

plasma varies from +bout 600K to as much as about 2000K, depending on the 

amount of solar activity (Gill, 1982, pp. 48-49). Nevertheless, our point 

of view is that in writing down the vertical structure equation one is 

addressing the prirnitive-equation model of the atmosphere, not the 

atmosphere itself. The shallowness assumptions of the primitive equations 

then make discussion and analysis of unbounded atmospheres irrelevant. In 

this paper we do give some results for unbounded atmospheres, partly in 
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Theorern 1 and pa r t ly  by way of examples i n  Sec. 4 ,  but  only f o r  the sake of 

con t r a s t  with our r e s u l t s  fo r  bounded atmospheres. 

The following basic  assumptions a re  made throughout our ana lys i s .  

S t a t i c  s t a b i l i t v  assumDtions. For 0 < p I p we assume t h a t  S 

% < O  dP (1 .21)  

and 

T g > O .  (1.22) 

I t  follows from ( 1 . 2 )  t h a t  

so t h a t  the VSE i s  regular  on any closed in t e rva l  not containing p - 0. 

Continuitv assumptions. We assume t h a t  o and &/dp a r e  continuous f o r  

Together with (1.23), t h i s  guarantees t h a t  a l l  of the  c l a s s i c a l  0 < p s . p s .  

theory of s ingular  Sturm-Liouville problems appl ies .  

L i m i t  assumptions, We make the t echn ica l  assumption t h a t  t h e  b a s i c  

have l i m i t s  s t a t e  temperature p r o f i l e  TO(p) i s  such t h a t  both To and -E - dTO 
To dP 

a s  p -, 0. Thus we exclude c e r t a i n  p a t h o l o g i c a l  p r o f i l e s  t h a t  o s c i l l a t e  

i n f i n i t e l y  of ten  near p - 0 .  We also assume t h a t  l i m  TO(p) is  f i n i t e .  
P’O 

-. We assume t h a t  

-+n 1 deo 
- ) > O .  
dP 

lim inf (-p 
P’O 

Also we assume t h a t  

1 / 4  < n < 1/2 ; 

(1 .24 )  

(1.25) 



for dry air, n 

1967, p. 45). 

singularity of 

that (1.24) 

infinite, as p 
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- - 2/7 for temperatures in the range 250-400K (Batchelor, 
In Sec. 2 it will be shown that (1.24) implies that the 

the VSE is of limit-point type. There it will also be seen 
1 

+ Q and p2 
-+n 

dB /dp has a limit, possibly holds whenever 

-b 0. In particular, (1.24) is satisfied for static stability 
0 

functions of power-law form (1.14) when the linearization validity criterion 

(1.15a) is met. 

Our first main result, proven in Sec. 2, is the following theorem. 

meorem I. Consider the V S E . ( i . 8 ) ,  LBC (i.9) and upper boundary 

condition 

and let 

TQ = lim TO(p) . 
P'O 

(1.26) 

(1.27) 

If TQ = 0 then the spectrum is totally discrete, i.e., there is a countably 

infinite set of eigenvalues (pn), 

and corresponding eigenfunctions {Xn) for which (1.8, 1.9, 1.26) are 

satisfied. If Ta z 0 then the portion of the spectrum for 

(1 .29 )  

is discrete. 



1 2  

The basic state atmosphere must be bounded for consistency with the 

shallowness approximations in the nonlinear primitive equations. This, in 

turn, implies that TQ - 0. Theorem 1 therefore allows us to conclude that 
under the assumptions implicit in the primitive equations, the VSE always 

has a totally discrete spectrum. 

In general the square-integrability upper boundary condition (1.26) is 

the one which is well-posed in the sense of always excluding one of the 

two linearly independent solutions of the VSE for every p .  The following 

theorem shows that for bounded basic state atmospheres, however, there are a 

number of equivalent upper boundary conditions. This theorem is proven in 

Section 3. 

Theorem 2. Consider the VSE (1.8) subject to the LBC (1.9). If the 

basic state atmosphere is bounded, i.e. if (1.19) holds, then all of the 

following are equivalent upper boundary conditions: 

(ii) lim IX(p)l < Q 

P’O 

if 0 < 6 I 1/2  . 

(1.30a) 

(1.30b) 

(1.30~) 

(1.30d) 

(1.30e) 
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The equivalence of conditions (i) and (ii) implies that the eigen- 

functions for a bounded atmosphere are bounded. It also follows from the 

theorem that for bounded atmospheres the boundary conditions (1.12, 1.13) 

implied by @u + 0 (1.5) and o + 0 (1.6), respectively, are in fact 

equivalent and well posed. Any of conditions (ii)-(v) could be useful in 

numerical calculations. 

In Section 3 we also prove the following theorem, which summarizes our 

main results for bounded atmospheres. 

Theorem 3. Consider the VSE (1.8) for a bounded atmosphere, subject 

to the LBC (1.9) and any one of the equivalent upper boundary conditions of 

Theorem 2. Then 

(i) The spectrum is totally discrete. 

(ii) The eigenvalues are all positive and satisfy 

- < p * < - ,  1 1 
noE RTS 

for n L 1 , 

(1.31a) 

(1.31b) 

where 0 is the geopotential extent defined in (1.18) and TS is the surface E 
- 

temperature. .In terms of the equivalent depths Hn = (gp,). f these 

inequalities are 

E RT < gHo < K@ S 

1 gHn <; (nOE-RTS) , n 1 1  . 

(1.32a) 

(1.32b) 
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(iii) The eigenfunctions X ( p )  form a complete orthogonal basis for 

the space of functions which are square-integrable over 0 < p < ps. 

Moreover, Xn has precisely n zeros on 0 I p I ps. 

n 

(iv) While each eigenfunction Xn remains bounded as p + 0, the 

derivative is unbounded. In fact there is a constant c - c(n) > 0 such that 

( 1 . 3 3 )  

for all p sufficiently small. 

Statement (i) of this theorem follows directly from Theorem 1. The 

bounds in statement (ii) are indeDendent of the details of the thermal 

profile: they depend only on the surface temperature TS and geopotential 

extent 4E, in addition to the constants n, R, and g. For shallow 

is not much larger than RTS. The bound (1.32a) therefore atmospheres, 

implies that the barotropic equivalent depth Ho is not sensitive to details 

of the thermal profile. 

n4E 

Statement (iii) justifies the use of the vertical structure functions 

Xn as basis functions for spectral expansions. Statement (iv) implies that 

there is a "boundary layer" near p - 0, where each vertical structure 
function changes rapidly. Numerical methods for both the VSE and the 

primitive equations themselves should be designed to take this into account. 

If one assumes an asymptotic form for T (p) near p = 0 then the 

asymptotic form of the eigenfunctions can be obtained. This is done in 

Sec. 4 .  As a first example we consider 

0 

( 1 . 3 4 )  
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where 0 < E < IC, r o  = Tm = 0, and r1 > 0.  Such an atmosphere is bounded, 

and the equivalence of the boundary conditions in Theorem 2 is verified by 

displaying the asymptotic behavior of the eigenfunctions. 

Second, we consider unbounded atmospheres for which 

OD 

TO(p) - Ta + Z 7.pJ near p = 0 , (1.35) 
j-1 J 

with Ta, > 0, which includes all atmospheres with isothermal tops. In this 

case we extend the result (1.29) of Theorem 1 by using the asymptotic 

behavior of the eigenfunctions tc! shcv t h a t  the spectrum is in fact 

continuous for p 2 p Hence there is only a finite number of eigenvalues 

in this case. 
C. 

For further contrast we consider two families of atmospheres for which 

TO(p) is specified throughout the domain but neither (1.34) nor (1.35) is 

satisfied. For both families TO(p) + 0 as p + 0, but so slowly that the 

atmosphere is unbounded. We exhibit a closed-form solution which is square- 

integrable but unbounded, and another which is not square-integable yet has 

+ 0 as p + 0. Hence the hypothesis of Theorem 2 that the basic state 
IJ dP 

atmosphere be bounded cannot be weakened. 

We conclude with a brief discussion of our results in Sec. 5. 
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2. SDectral theory 

The object of this section is to prove Theorem 1, which shall be done 

by application of the classical theory of singular Sturm-Liouville problems. 

Of fundamental importance is that the VSE is always of limit-point type, 

which we will first elaborate upon. 

From general existence theory it is known that the VSE (1.8), with no 

boundary conditions imposed, has precisely two linearly independent 

solutions for any number p .  A Sturm-Liouville differential equation is said 

to be of limit-ooint tvDe if for some choice of p ,  say p - po, one solution 

is not square-integrable. The classical theory due to Weyl (cf. Coddington 

and Levinson, 1955, Ch. 9 ,  Theotem 2.1) shows that in fact such an equation 

has at most one square-integrable solution for number p .  Thus an 

appropriate boundary condition for equations of limit-point type is square- 

integrability, since this condition guarantees uniqueness. The spectrum is 

then determined by imposing a boundary condition at the regular point, in 

our case the LBC (1.9). 

By choosing po = 0, to demonstrate that the VSE is of limit-point type 

it suffices to show that the homogeneous equation 

has a solution which is not square-integrable. One solution is X = constant, 

which of course is square-integrable. The other solution is X = $(p), 

P 

We will show that $J is no t  square-integrable, i.e., 
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(2.3) 

P 

by proving the following lema. 

Lemma 2.1 . There e x i s t s  a constant c1 > 0 such t h a t  

f o r  0 < p s p s .  (2.4) 

Proof: The s ta t ic  s t a b i l i t y  assumption (1.21) implies that 

1 
-+IC dB 

-p dp * o > o  f o r  0 < p s ps , (2.5) 

and by virtue of the entropy assumption (1.24) t h e r e  is a c o n s t a n t  6 > 0 

such that  i n  fact  

1 
-+IC deo 

-p2 - > 6  f o r  0 < p I ps . 
dP 

Subs t i t u t ing  (2'.6) i n t o  the  de f in i t i on  (1.2b) of u ,  w e  then have 

Lemma 2.2. The VSE i s  of  l i m i t - p o i n t  type,  so t h a t  an appropriate  

upper boundary condi t ion is 

0 
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Proof: Inserting the bound ( 2 . 4 )  into the definition (2.2) of $(p), 

one obtains by integration 

Therefore the integral in (2.3) diverges at least logarithmically, and the 

lemma is proven. 

We reiterate that there are no other appropriate boundary conditions 

without further assumptions on TO(p). Equivalent boundary conditions for 

bounded atmospheres are given in Theorem 2. 

Lemmas 2.1 and 2.2 depend crucially on the entropy assumption (1.24). 

Before proceeding with the proof of Theorem 1, we therefore discuss the 

nature of this assumption. To our knowledge, all thermal profiles 

considered previously in the literature are such that both 

B O - + -  as p + O  (2.10) 

and 
1 -+n deo 1 -+n deo 

lim inf (-p2 - - lim sup (-p2 - . (2.11) 
dP P+O dP P+O 

In particular, Staniforth et al. (1985) studied the family 

(2.12) 

which includes most previously-studied profiles, and they showed that 

linearization validity requires 

0 2 2-tc. (2.13) 
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Using ( 2 . 5 )  one f inds  tha t  the potent ia l  temperature p r o f i l e  eo  correspond-  

ing t o  (2.12) is  given by 

-a+(2-n) -0+(2-n) 
) a > 2-n R ~ ( 2 - n )  (P -PS 

; log - 
# (2.14) 

a - 2-n PS 
P 

~ o ( P ) - ~ o ( P s )  = 

while 

(2.15) 

Clearly both (2.10)  and ( 2 . 1 1 )  are s a t i s f i e d .  

To complete the  discussion of our entropy assumption (1.24). w e  now 

a s s e r t  t h a t  it is  ac tua l ly  less r e s t r i c t i v e  than propert ies  (2 .10) .  (2.11). 

Claim 2 . 1 .  For thermal prof i les  s a t i s fy ing  (2 .10)  and (2.11)l one has 

-+n 1 deo 
l i m  i n f  (-p2 dp ) = + a .  

P+O 

Hence the  entropy assumption (1 .24 )  is  s a t i s f i e d .  

Proof: Suppose ( 2 . 1 6 )  is fa l se .  Then (2.11) implies that  

Hence there  is  a constant M > 0 such t h a t  

1 
-+n deo 
2 -  < M  f o r  O < p s p  s *  - p  dp 

(2;16) 

(2.17) 

(2.18) 

In tegra t ing  from p t o  ps, one finds t h a t  
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(2.19) 

where we have used the assumption (1.25b) that n < 1/2. Hence BO(p) is 

bounded, contradicting (2.10), and the claim is established. 

So far it has been shown that for any number p there is at most one 

square-integrable solution of the VSE: when a solution of the VSE satisfying 

the upper boundary condition (2.8) exists, it is uniaue. Theorem 1, whose 

proof occupies the remainder of this section, concerns the existence of 

solutions under the additional condition (1.9) at the lower boundary. 

Our theorem is simply an application of a classical result (cf. 

Berkowitz, 1959, Theorem 5.4) in the spectral theory of singular Sturm- 

Liouville problems, namely that the spectrum is discrete below p - pc , where 
1 l i m  inf 40 

P'O 432(P) ' PC (2.20) 

the function $(p) having been defined in (2.2). In particular, there is a 

countably infinite set of eigenvalues satisfying (1.28) when pc - + a. 
prove Theorem 1, wevneed only show that pc defined by (2.20) satisfies 

To 

when Ta - 0 (2.21a) 

PC 1/(4nRTa) when Ta f 0 . (2.21b) 

To do s o ,  we prove the following two lemmas regarding the asymptotic 

behavior of u(p) and + ( p ) .  



Lemma 2 . 3 .  

2 l i m  p a(p) = nRT- . 
P'O 

Proof: Since 

2 
p D nRTO - RpdTo/dp , (2.22) 

by (1.2c) ,  w e  need only show t h a t  pdT /dp has a l i m i t  and that  i n  fact 0 

- 0 .  (2.23) l i m  p - dTO 
dP P-.O 

- Lxcept when 

(2.24) T o + O  and 1% dp1-0 dTO as p + O ,  

e x i s t e n c e  of  the  l i m i t  follows d i r e c t l y  from the l i m i t  assumptions 

of  Sec. 1, s ince  p dp dTo - (To) (-e -) . However, the s ta t ic  s t a b i l i t y  

assumption implies that  

dTO 
To dP 

d log  B o  
< n  dTO -E--=.+p 

To dP dP 

f o r  0 < p I p so ( 2 . 2 4 )  would imply that S' 

(2.25) 

(2.26) 

This i s  no t  possible  s ince To > 0 f o r  0 < p I ps. Hence p dTo/dp has a 

l i m i t .  

Now w e  prove  ( 2 . 2 3 )  by contradiction. Suppose ( 2 . 2 3 )  does not  hold,  

p dTo/dp. Then there are constants  6 > 0 and p* > 0 such t h a t  and def ine  T 
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~T(p)l > 6 for o < p c p* . ( 2 . 2 7 )  

Hence 

P P P 
i.e. 

( 2 . 2 8 )  

p* 
ITO(P*) - TO(P)I > 6 log - P + b~ as p + 0, ( 2 . 2 9 )  

which contradicts our basic assumption that lim T ( p )  is finite. Therefore 0 
P'O 

( 2 . 2 3 )  must be true and the lemma is proven. 

Lemma 2.4. 

lim p$~(p) - nRTm . 
P'O 

Proof: From the previous lemma and the definition ( 2 . 2 )  of $(p) it 

follows that 

( 2 . 3 0 )  

P 
where 

( 2 . 3 1 )  2 g(s) 1 s o(s)  - nRTm + 0 as s -+ 0 . 

From ( 2 . 3 0 )  it follows that 

( 2 . 3 2 )  

so the lemma is proven if we can show that 



PS 
lim p g(s) s-* ds = 0 . 

P P’O 
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(2.33) 

This is clearly the case if the integral converges as p + 0, so assume it 

does not. Then L’Hospital’s rule yields 

1 

where (2.31) has been used. This completes the proof. 

The proof of Theorem 1 in case Ta z 0 is now immediate, upon rewriting 

(2.20) as 

(2 .35)  

Lemmas 2.3 and 2.4 imply that both the numerator and denominator here have 

limits, namely nRTa and ~(KRT-)~, so that the result (2.21b) follows. 

Finally we treat the case T, - 0 and complete the proof of Theorem 1 
by verifying (2.21a). To do so we prove the following lemma. 

S’ Lemma 2 . 5 .  For 0 < p I p 

RT(-JP) 
P (i) fs o(s)  ds < 

P 



2r: 

Proof :  Using (1 .2b)  and ( 2 . 2 ) ,  we prove statement (i) by integrating 

by parts: 

P P 

(2.36) 

where the inequality was obtained since n < 1 and B o >  0 .  

definition (1.2a) of Q we then obtain 

From the 

thus proving statement (ii). 

From part (ii) of this lemma it is clear that the proof of Theorem 1 

is complete if we can show that 

d log eo 
dP 

1 ) - + a .  lim inf - (-p 
P-+O RTO 

Since To + 0 as p + 0, this is certainly true in case 

d log eo 
dP 

) > O .  lim inf (-p 
P'O 

(2.38) 

(2.39) 
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The only other possibility is t h a t  

d l o g  B o  
lim inf (-p 1 - 0 ,  (2 .40)  P-+O dP 

since - d log eO/dp > 0 for 0 < p 5 p by static stability. Now s 

d l o g  Bo d log To 
" dp - - n .  (2 .41)  dP 

But lim (p d log To/dp) exists by the limit assumption, so (2 .40 )  implies 

that in fact 
P'O 

d log d o  
lim (-p 1 - 0 .  ( 2 . 4 2 )  P'O dP 

Hence, for each c > 0 there exists a p* > 0 such that 

d log  O o  
< E  for O < p < p , .  -' dp 

Integrating from p to p*, one obtains 

and therefore 

T < const. x pn-' 0 

Now 

( 2 . 4 3 )  

(2 .44 )  

(2 .45 )  



s o  equation ( 2 . 4 5 )  i m p l i e s  t h a t  

-+n 1 ddo 

1 ) > const.  x p B 2  (-p dp 1 ( 2 . 4 7 )  
d log  B o  

- (-P dp 
RTO 

where 

1 /3 - -2(n - - 4 - €1  - ( 2 . 4 8 )  

Since n > 1 /4  by (1.25a), we may choose c so that /3 C 0 .  The r e s u l t  ( 2 . 3 8 )  

then follows from ( 2 . 4 7 )  by virtue of the entropy assumption (1.24), thereby 

completing the proof o f  Theorem 1. 
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3 .  Bounded atmomheres 

In this section we prove Theorems 2 and 3 .  The first lemma expresses 

boundedness of the basic state atmosphere as a condition on the static 

stability function 4 .  

Lemma 3.1. Suppose the basic state atmosphere is bounded, i.e., @E 

defined by (1.18) is finite. Then 

(i) TO(p) + 0 as p + 0 (3.1) 

and 

Proof: By the definltion of (1.17) of a0(p)  and from our basic 

assumption that lim TO(p) exists, it follows that the limit must in fact be 

zero, for otherwise the integral in (1.17) would diverge at least 

logarithmically. 

P+O 

To prove part (ii), write (1.17) as 

O0(p) - Oo(ps) + R f’ B o ( s )  sn-l ds 

P 
‘S dOo(s) PS n 

P 
ds] 9 ( 3 . 3 )  = iO(ps) + [T,(s)lp - J s ds 

or, using (1.2b), 

1 1 
(P0(p) = QO(ps) + ; RTS - - RTO(p) + sa(s) ds . ( 3 . 4 )  

n 
P 

From (3.1) one then obtains 
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completing the proof. 

The following two lemmas are fundamental and will be used extensively. 

The first of these simply states several versions and immediate consequences 

of the variation-of-constants formula for the VSE. 

Lemma 3.2. 

and 0 C p* I ps. 

Suppose that X(p) satisfies the VSE (1.8). 

Then 

Let 0 C p 5 ps 

P 
where 

P 

a = -' a + p X ( s )  ds = const. 
0 dP 

(3.7) 

( 3 . 8 )  
P 

Here $I = $I(p) depends only on p*, while a depends on p* but not on p .  

(3.9) 
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(iii) If - - + 0 as p -* 0 then 
4 dP 

- -  dX = - p I X(s) ds 
0 

0 dP 
(3.11) 

and 

(iv) If ' a + 0 as p + 0 and if X satisfies the LBC (1.9), then 
0 dP 

- p z ( s )  ds , 
RTS () 

(3.13) 

where 2 is defined in (3.9). 

proof: By differentiating (3.6), dividing by o(p), and 

differentiating the result, one obtains the V S E .  Thus (3.6) defines a 

solution of the VSE. The same argument can be applied in reverse by virtue 

of the continuity assumptions, s o  that the V S E  is in fact equivalent to 

(3.6) and part (i) is proven. 

In part (ii), if X(ps) - 0 then the LBC would imply dX(pS)/dp - 0, 
hence the VSE would imply X(p) = 0. To verify (3.10), evaluate (3.8) at 

p = ps and use the LBC to find 
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Now substitute ( 3 . 1 4 )  into ( 3 . 6 ) ,  choose p* - p s ,  and divide by X(ps) to 

obtain (3.10). 

To verify (3.11) in part (iii), let p + 0 in ( 3 . 8 ) ,  so that 

(3.15) 

then substitute (3.15) into ( 3 . 8 )  to obtain (3.11). Equation (3.12a) 

follows by substituting (3.15) into ( 3 . 6 ) .  Equation (3.12b) follows most 

easily by multiplying (3.11) by o(p) and integrating the result from p to 

p* * 

Part (iv) is verified by equating (3.14) and (3.15), and then dividing 

by X(P& 

Lemma 3 . 3 .  Suppose that the basic state atmosphere is bounded, and 

that X satisfies the VSE (1.8) and LBC (1.9). Then 

X has finitely many zeros. 

If p i 0 then in fact X has no zeros. 

(i) 

(ii) 

(iii) Both X and have limits as p + 0. 
4 dP 

Proof: The zeros of any solution of a singular Sturm-Liouville 

First we show that if X equation can accumulate only at the singular point. 

has any zeros at all, then p > 0, thereby proving statement (ii). Denote by 

p1 the location of the first zero to the left of ps, so 2 defined in ( 3 . 9 )  

is such that z(p,) - 0 and z(p) > 0 for p1 < p C ps. Setting p - PI in 
(3.10) then gives 
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from which it follows that p > 0 because $(p ) > 0 and the integrand is 

positive. 

1 

To prove (i), suppose p > 0. Let pi and p be two successive zeros of 
j 

X(p), with 0 < pi < pj < ps.  Choosing p* - in (3.6) gives 
'j 

where 

F 

(3.18) 

Now either X(p) > 0 or X(p) < 0 for pi < p < p3. In the former case, 

p > 0 we find from ( 3 . 1 7 )  th'at 

0 < X(P> < a +(PI 

hence a > 0, while in the latter, 

0 < - U p >  < - a $,SI for pi < P < pj , 

and a < 0. Combining, we have 

0 < IX(P>I < la1 $(PI for Pi < P < Pj > 

and a # 0. 

Setting p - in (3.17) gives Pi 

(3.19) 

(3.20 

(3.21) 

since 
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so that 

where ( 3 . 2 1 )  has been used. Therefore 

1 < p 'I' $(s) ds 

= p [ a(p')  dp'] ds 

= p p (s-pi) a ( s )  ds 

< p s u ( s )  ds . 

(3.23) 

(3.24) 

Summing over a l l  p a i r s  of successive zeros of  X ,  it follows that the to ta l  

number n of zeros for  0 < p 5 ps s a t i s f i e s  



( 3 . 2 5 )  

The integral is finite by Lemma 3.1, hence part (i) is proven. 

Finally we prove part (iii). Our continuity assumptions on u 

guarantee that every solution X of the VSE is continuous for 0 < p S ps. 

Since X also has finitely many zeros it follows that lim Jp* ~(s) ds exists 

a has a limit as p + 0. for every p* > 0. Therefore ( 3 . 8 )  implies that 

Now choose p* such that X(p) does not change sign for 0 < p < p*. Then it 

follows f r m  ( 3 . 8 )  that dX/Ap hrs =t m s t  one zero for 0 < p < p*. 

Therefore X is monotone in some neighborhood of p - 0, and hence X has a 

P'O P 

4 dP 

limit as p + 0. This completes the proof of Lemma 3 . 3 .  

The most difficult part of the proof of Theorem 2 is showing that 

statement (iii) of the theorem implies statement (ii) of the theorem. We 

therefore begin by proving a lemma which gives several consequences of 

statement (iii). 

Lemma 3 . 4 .  Suppose the basic state atmosphere is bounded, and that X 

' a - r ~ a s p - r ~ .  Then satisfies the VSE ( 1 . 8 ) , .  the LBC (1.9), and 
Q dP 

(ii) pX(p) -r 0 as p -+ 0 

(iii) If X has any zeros, then 

( 3 . 2 6 )  

( 3 . 2 7 )  

( 3 . 2 8 )  

where p denotes the first zero of X(p) to the right of p - 0. 1 



34 

(iv) Given any E > 0, t he re  is a p > 0 such that 0 

s u ( s )  ds I c if 0 < p I po . 
0 

(3.29) 

If e < 1 and 0 < p I po, then 

Proof: To prove part (i), suppose that p si 0. We then have 

P(p) - X(p)/X(p,) > 0 for 0 < p I ps by Lemma 3.3(ii), hence the right-hand 

side of (3.13) is nonpositive. This is impossible since the left-hand side 

is positive. Therefore p > 0. 

To prove part (ii), observe that since X has finitely many zeros 

Since by Lemma 3.3(i), there is a p* > 0 such that X(p) z 0 for 0 < p < p*. 

p > 0, for this choice of p* in (3.12a) we find that for 0 < p < p*, 

(3.32) 
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where we have used ( 3  

0 < PlX(P) 

8) and Lemma 2.5(i). Therefore 

by ( 3 . 1 ) ,  and part (ii) of the lemma is established. 

Now let p1 be as defined in statement (iii). Then setting p* = p1 in 

( 3 . 3 1 )  yields 

and integrating ( 3 . 3 4 )  from zero t o  p1 leads to 

1 < p f1 [ f1 u ( s )  ds] dp 

O P  

provided the indicated limit exists. In fact the limit is zero since, by 

Lemma 2.5(i), 

0 < p p' a ( s )  ds < p a ( s )  ds < RTO(p) + 0 as p + 0 . ( 3 . 3 6 )  
0 rs P 

!' 

This proves statement (iii). 



The f i r s t  pa r t  of statement 

Lemma 3 . 1 ( i i ) .  If E < 1 then, i n  par t icu l  

70 
p J 

0 

s a ( s )  ds < 1 . 

3 6  

follows immediately from 

(3.37) 

I f  X has any zeros ,  then (3 .28 )  and (3.37) together imply t h a t  po < pl. 

Hence X(p) # 0 f o r  0 < p 5 po. But from (3.11) we have 

(3.38) 

and in tegra t ing  from zero t o  p and using (3.27) gives 

0 0 0 

Since X(p) does not  change s ign f o r  0 < p I po w e  therefore  have on t h i s  

i n t e rva l  
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I 

(3.40) 

where the last inequality follows from (3.29). This completes the proof of 

Lemma 3.4. 

We are now ready to prove Theorem 2. Referring to the statements in 

the theorem numbered (i) through (v),  we shall prove the theorem by showing 

that 

(iii) -> (ii) -> (i) -> (iii) 

(i) <-> (iv) 

(i) <I> (v) 

Proof that (iii) => (ii).: Let e and po be as stated in Lemma 4(iv), 

and let 0 < p I p* I po. From (3.12b) and (3.30) it then follows that 

IX(P)I 5 IX(P*)I + s u ( s )  IX(s)l ds . (3.41) 

P 

By virtue of the Gronwall inequality (cf. Coddington and Levinson, 1955, 

p .  37, or Hale, 1969, pp. 36-37), it follows from (3.41) that in fact 

P P 

The integrals here may be bounded in terms of E ,  using (3.29), as follows: 

P 



f 

(3.43) 
i 

But X(p) has a limit as p + 0 by Lemma 3.3(iii), hence (3.43) implies that 

the limit is finite. 

Proof that (ii) -> (i): Every solution of the VSE is continuous, and 

therefore bounded, for p* 5 p 5 ps with p* > 0 arbitrary. Statement (ii) 

implies that in fact this is true for 0 I p I p Therefore X is square- 

integrable. 
S' 

Proof that (i) => (iii): Lemma 3.3(iii) guarantees that 

(3.44) 

exists. We will show that (i) -> (iii) by proving the contrapositive. 

Suppose that W + 0, so that there is a p* > 0 such that 

From Lemma 2.1 it then follows that 

(3.46) 

Upon integrating from p to p*, this yields 

IX(P) - X(P*)l > WCl(P -1'2- pi1/*) for o < p < p* . (3.47) 

It follows that 
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r s  X 2 (s) ds L X2(s) ds 

P P 

P P 

P 
+ a  as p + O  ( 3 . 4 8 )  

Proof that (i) -> (iv) : We have already shown that (i) implies both 

(ii) and (iii). But (ii) and (iil) together imply (iv). 

Proof that (iv) => (i): Statement (iv) implies that lim X(p) - 0 or 
lim a - 0, since Lemma 3.3(iii) states that both of these limits exist 

for every solution of the VSE. In the first case, (i) follows trivially. 

In the latter case (i) also follows since we already showed that 

(iii) -> (i) . 

P+O 

p+o dp 

Proof that (i) => (v): This is trivial since (i) => (ii) => (v). 

Proof that (v) -> (i): We will show that (v) -> (iii), by proving the 

contrapositive. As shown previously, the negation of (iii) implies (3.47). 

Multiplying ( 3 . 4 7 )  by p gives 6 

and therefore, letting p + 0, we have 

6 lim inf p IX(p)l 2 Wcl > 0 , 
P'O 

(3.50) 

, 



for 0 < 6 I 1/2. This completes the proof of Theorem 2 .  

Proof of Theorem 3 :  Part (i) follows directly from Theorem 1 and 

Lemma 3.l(i). We do not prove part (iii) , but only point out that for 

limit-point Sturm-Liouville problems with totally discrete spectra, the 

facts about completeness, orthogonality, and number of zeros of the 

eigenfunctions are still the same as for regular Sturm-Liouville problems; 

cf. Coddington and Levinson (1955, Chapter 9, Theorem 3.1 and Problem 1). 

We now prove part (ii). Positivity of the eigenvalues was already 

stated and proven as Lemma 3.4(i). To obtain the eigenvalue bounds we 

use the fact that the eigenfunction Xn corresponding to eigenvaiue pn has 

precisely n zeros. for o < p 5 ps. 

Since po > 0, it then follows from (3.11) that &,/dp < 0 for 0 < p 5 ps, so 

in fact xo(p) > ao(ps) - 1 for 0 < p < ps. 

In particular, Wo(p) - ~ ~ ( p ) / ~ ~ ( p ~ )  > o 

From (3.13) we then have 

(3.51) 

proving the upper bound in (1.31a). 

To obtain the lower bound, use (3.13) and Lemma 3.4(ii) to write 

xo(s) ds 

1 - Po o ( s )  ds (3 .52 )  
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Now from (3.11) and (3.13) we have for 0 < p < ps 

- -  fo(s) ds - P o  4 dP 
- 

0 

PS 
RTS * 

I- 

Introducing (3.53) into (3.52) and using Lemma 3.1(ii), we get 

- - < P O +  1 -!b rs sa(s) ds 
RTS RTs 

(3.53) 

(3.54) 

which completes the proof of (1.31a). 

The bound (1.31b) for n 1 1  is actually a refinement of (3.25). If we 

denote the first zero of X by p1 and the last by pn, we have from (3.24) 

that in fact 
n 

n-l< pn s a ( s )  ds . 
P1 

(3.55) 

Adding inequalities (3.28) and (3.55) then gives 
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n < pn s a ( s )  ds 
0 

< pn rs s u ( s )  ds 
0 

(3.56) 

and (1.31b) follows from Lemma 3,1(ii). 

Inequalities (1.32a,b) follow directly from (1.31a.b). We remark 

' that, while the bounds in (1.32a) usually provide a good estimate of the 

barotropic equivalent depth as pointed out in the Introduction, the bounds 

in (1.32b) become progressively worse as n increases. This is clear from 

the derivation of (3.24). Better bounds can be obtained if one has some 

information about TO(p). 

It remains to prove statement (iv). If p1 denotes the first zero of 

Xn, it follows from (3.11) that X,(p) is monotone for 0 < p < pl, hence 

for 0 < p 5 p* < pl. Again using (3.11) we then have 

(3.58) 
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for 0 < p I p* < p l ,  where we have used Lemma 2.1. This completes the 

proof .  



4 .  Ex amD 1 e s 

In this section we give four examples that illustrate some of our 

theoretical results. In the first two examples, we specify the asymptotic 

form of TO(p) near p = 0 and we apply the Frobenius (power series) method 

(e.g., Coddington and Levinson, 1955, Section 4 . 8 )  to determine the 

asymptotic behavior of all solutions of the VSE. These asymptotic results 

depend neither on TO(p) away from p - 0 nor on the lower boundary condition. 
In Example 1 the atmosphere is bounded and the asymptotic results allow one 

to verify directly the equivalent boundary conditions of Theorem 2 .  In 

Example 2 we have lim TO(p) + 0 and we show that the spectrum is continuous 
p-+Q 

for p 1 pc, a result which complements Theorem 1. 

In the third and fourth examples we specify TO(p) throughout the 

domain, and we obtain closed-form solutions of the VSE satisfying the lower 

boundary condition. In both examples TO(p) -+ 0 as p -+ 0, but slowly enough 

that the atmosphere is unbounded. These two examples are used as counter- 

examples showing that Theorem 2 is not true when its stated hypothesis of a 

bounded atmosphere is replaced by the somewhat weaker hypothesis that 

TO(p) -+ 0 as p + 0. In particular, Example 3 shows that it is possible for 

non-square-integrable solutions of the VSE to have - - -P 0 as p -+ 0, while 
Q dP 

Example 4 shows that it is possible for square-integrable solutions (eigen- 

functions) to be unbounded. 

ExamDle 1. Suppose that near p - 0, T (p) is an analytic function 0 

of Pes 
Q) 

6.j TO(P) - 7.P P j -0 J 

where we assume that 

O < € < / C ,  T O ' O ,  y o .  

( 4 . 1 )  

(4.2) 
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I t  follows t h a t  our basic  assumptions a re  a l l  s a t i s f i e d  near p = 0 ,  and tha t  

Tco - l i m  TO(p)  = 0 . 
P'O 

( 4 . 3 )  

Hence the spectrum is t o t a l l y  d iscre te .  

From (4.1)  and the def in i t ion  ( 1 . 2 ~ )  of Q ,  it follows tha t  near p - 0 ,  

Q has the form 

By t a k i n g  7 

considered by Stan i for th  e t  a l .  (1985), not  including the l imi t ing  cases 

- 0 f o r  j 1 2 ,  t h i s  family reduces t o  the family (1 .14 , l . lS)  
j 

a = 2-n and a = 2 .  

Using (4.4) we wri te  

where 

(4.  Sa) 

(4.5b) 

the coe f f i c i en t s  b can be calculated from the c o e f f i c i e n t s  i n  ( 4 . 4 ) .  Now 

s u b s t i t u t i n g  (4.5a) i n to  the VSE ( 1 . 8 ) ,  and making the coordinate t ransfor -  
j 

mation 

the VSE becomes 

where 

(4.7a)  

(4.7b) 
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(4.7c) 

The Frobenius method applies since the coefficients C and D are 

analytic functions of q .  Therefore the solutions of the VSE have the form 

in a neighborhood of p - 0, where the series converge uniformly and can be 
differentiated term-by-term. The exponent and coefficients a are obtained 

by substituting (4.8) into (4.7a.), using the power-series expansions for 

C(q) and D(q), and then equating coefficients of like powers of q. Using 

(4.6) one finds that the regular solution X(l)(p) - X(l)(p;p) and the 

singular solution X(2)(p) = X(2)(p;p) are given near p - 0 by 

3 

(4.9a) 

(4.9b) 

where the coefficients a(') and a(2) can be expressed in terms of the 7 

(4.1). 

in 
j j j 

It is a simple matter to verify that X(') satisfies each of the 

In boundary conditions of Theorem 2, whereas X(2) satisfies none of them. 

particular the nth eigenfuncion Xn is given by 

(4.10) 

j~ being the nth eigenvalue. n 
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ExamDle 2. Suppose that near p = 0,  TO(p) is an analytic function 

of PI 
m 

TO(p) = C 7.p j , r o  > 0 . 
j -0  J 

(4.11) 

If 7 - 0 for j 1 1 ,  this reduces to the familiar atmosphere with an 

isothermal top. Our basic assumptions are all satisfied near p - 0, and j 

Tm .I lim TO(p) - r o  + 0 . 
P+O 

(4.12) 

is discrete. We will show that the spectrum is continuous for p 2 p c .  

From (4.1) and the definition (1.2~) of 4 ,  we have 

j 
Q) 

a(p) = Rpe2 C (n- j )  z j p  . 
j -0 

7 ,refore 

where B is the analytic function 
aD 

B(p) = 2 b.pj 
j-0 J 

(4.14) 

(4.15a) 

(4.15b) 

whose coefficients can be expressed in terms of the 7 

written as 

The VSE can then be Y 

(4.16a) 
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where 

(4.16b) 

and 

D(P) - * (4.16~) 

are analytic. Application of the Frobenius method results in the following 

three cases. 

If p < pc, we find that near p - 0 the two linearly independent 
solutions are of the form 

where 

(4.17~) 

Clearly X(l) is square-integrable and X (2) is not. For any eigenvalue 

pn C pc it follows that the corresponding eigenfunction is 

The actual number of  eigenvalues p < pc, if any, depends upon the thermal 

structure all the way to p = pSl as well as upon the lower boundary 

condition. This number is always finite. 

If P - PCl we find instead that 

(4.19a) 
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It is clear that X(') is not square-integrable. Since IX(2)(p)l > IX(')(p)l 

for all p sufficiently small, it follows that X(2) is not square-integrable 

either, nor is any linear combination of Xtl) and X (2) . 
If p > pc, two linearly independent solutions are 

and 

where 

(4.20~) 

Observe that X(') (p) is not square- integrable, for 

1 
47 log p - -  sin(2-y log p) , (4.21) 2 1 I s-l cos (y  log s )  ds 9 - - 2 

P 

which is unbounded as p -+ 0. 

integrable, nor is ,any linear combination of X(') and X 

Similarly it follows that X(2) is not square- 

(2) . 
Thus there are no square-integrable solutions of the VSE for p 2 p c .  

This means that the spectrum is continuous for p 2 p c :  for every such p 

there is a unique solution of the VSE satisfying the lower boundary 

condition ( 1 . 9 ) ,  but the solution is not square-integrable. However, one 

can still expand arbitrary square-integrable functions in terms of the 

totality of these solutions for p 1 pc and the eigenfunctions (if any) 

for p < p in a manner analogous to the Fourier integral; cf. Coddington C' 
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and Levinson (1955, Chapter 9, Theorem 3.1), and Staniforth et al. (1985, 

p. 346). Thus if one is interested in spectral expansions, then no upper 

boundary condition should be imposed when p 2 pc. We reiterate that 

continuous spectra cannot arise for bounded atmospheres. The continuous 

spectrum in this example is spurious in the sense that the primitive 

equations on which the VSE is based do not apply to unbounded atmospheres, 

due to the traditional shallowness approximations. 

Since the atmosphere is unbounded in this example, Theorem 2 does not 

apply. In particular, for a l l  p > 0 it follows from our three sets of 

asymptotic formulas that both X(') and X(2) satisfy 

- -  ' a + ~  a s p + ~ .  
Q dP (4.22) 

Thus the boundary condition (4.22) is generally not well posed, because 

it is not strong enough to eliminate the non-square-integrable solutions 

when p < pc. 

The boundary condition (4.22) is important because it is derived 

from the commonly invoked boundary condition (1.6) that w -+ 0 as p + 0 in 

the primitive equations. Theorem 2 implies that (4.22) is well-posed for 

bounded atmospheres, while Example 2 shows that it is generally not 

well-posed when Ta # 0. In the next example Ta - 0 but the atmosphere is 

unbounded. We wil1,see that the boundary condition (4.22) is still not 

well-posed. 

EXamDh 3 .  Let as > 0 be arbitrary, and let e > 0 be an arbitrary 

parameter. Consider the VSE problem for 

2 
o(p) - - RTS (1 - E log -E )-2 ( - - e l o g  -E ) . (4.23) 

P 2 PS RTS PS 
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From (1.2b) it follows that the temperature profile TO(p) corresponding to 

any a(p) is given by 

TO(P) = P*[TSP;n + R-l Is o(s )  ds] . 
P 

(4 .24 )  

Upon substituting (4 .23 )  into (4 .24 )  it is easily verified that our basic 

assumptions in Sec. 1 are all satisfied. 

It can also be established that 

Ta - l i m  Tc(p)  - 0 , 
P’O 

(4 .25)  

as follows. For o given by (4 .23 )  it is clear that the integral i n  ( 4 . 2 4 )  

diverges as p + 0. Therefore L‘Hospital’s rule applies to give asymptoti- 

cally 

(4 .26)  

from which ( 4 . 2 5 )  follows immediately. By Theorem 1 the spectrum of the VSE 

is therefore totally discrete. Nevertheless the basic state atmosphere is 

unbounded because from ( 4 . 2 6 )  we have that 

31 ds 
S 

ds - 
-s log - 

P PS 
tce I P RTo:s) 



log(-log -E ) , = -  RTS 
PS ne 
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(4 .27)  

so from (1.18) it follows that Q0(p) + Q as p + 0. 

By differentiation it can be verified that the function 

(4.28) 

where 

satisfies the LBC and VSE with 

v- e P’q. 

(4.29) 

(4.30) 

On the other hand, this X is not an eigenfunction because it is clearly not 

square-integrable. However, one finds that 

- -  l d x = - ( l - e  l0g-E) - ( v-e ) / e  

(7 dP PS 
(4.31) 

Therefore ( 4 . 2 2 )  holds whenever the parameters are such that e < v .  Once 

again we see that the boundary condition ( 4 . 2 2 )  is too weak to exclude 

solutions of the VSE which are n o t  square-integrable. This example also 

shows that Theorem 2 does not hold under the hypothesis that To -+ 0 as 

p -+ 0, which was shown by Lemma 2.1 to be weaker than the stated hypothesis 

that the atmosphere be bounded. 

Notice also that if e 2 v ,  this example shows that it is possible for 

a function to satisfy the LBC and the VSE with p 5 0 .  

We remark that the parameters os and e in this example can be 

chosen in such a way that TO(p) is arbitrarily close to being constant on 
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any interval p* 5 p 5 ps with p* > 0. TO see this, choose o so that S 

dTo/dp = 0 at p - ps, i.e., 
-2 o = nRTSpS . 

S 

Then ( 4 . 2 3 )  reads 

-2 - nRTSp [l + (I(€)] 

( 4 . 3 2 )  

( 4 . 3 3 )  

Therefore o(p) can be made arbitrarily close to the isothermal static 

-2 stability function nRTSp over any interval away from p - 0 ,  by choosing 

e sufficiently small. For such a choice of parameters, it follows that 

TO(p) = T from the surface up to a point p* arbitrarily close to p - 0, 
after which ( 4 . 2 6 )  applies and TO(p) drops to zero. 

S 

It is well known, and also follows from Example 2, that the VSE for 

isothermal atmospheres has a continuous spectrum. Example 3 shows that by 

modifying the isothermal atmosphere in a neighborhood of p - 0, a totally 
discrete spectrum can be obtained. 

This example was created by choosing - - (judiciously) to be of the 
form ( 4 . 3 1 ) ,  then differentiating to obtain -pX, then differentiating once 

= dP 

more to obtain -p dX/dp. The LBC then determines p ,  and u is recovered upon 

dividing dX/dp by . The following example is constructed in the same 

way, but from a different choice of - - . As in Example 3 ,  we will have 

Tm = 0 but an unbounded atmosphere. The example will exhibit an 

eigenfunction which is unbounded. This is in contrast with Theorem 2 ,  which 

states that for bounded atmospheres all eigenfunctions are bounded. 

0 dP 

Q dP 

Example 4 .  Let o > 0 be arbitrary, and let a parameter 6 satisfy 
S 

,Y 

0 < 6 < min( - ,I> 
RTS 

( 4 . 3 4 )  
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Define for given us  and 6 the positive parameter E ,  

2 

I,=h) (- - 6 )  , 
RTS 

E = ( 6  ( 4 . 3 5 )  

and consider the VSE problem for 

2 2 
RTS 

P 
( - -  6 )  log "1. ( 4 . 3 6 )  

RTS PS 
a(p) = 2 (1 - E log 

As in Exampie 3 it can be verified that the basic assumptions are satisfied, 

that TO(p) + 0 as p --c 0, and that the atmosphere is unbounded. In particular 

the spectrum is totally discrete. One can make the temperature profile 

corresponding to ( 4 . 3 6 )  nearly isothermal as in Example 3 ,  by the choice 

( 4 . 3 2 )  of as and by choosing 6 sufficiently close to n.  For the choice 

6 - 1/2, ( 4 . 3 6 )  is identical to the static stability function (4.23) of 
2 

V S  1 Example 3 with e - - - - RTS 2 * 

By differentiation it can be verified that the function 

2 
-E ) ( W / C  6 - ( - OSPS - 6 )  log "1 ( 4 . 3 7 )  [ RTS PS 

X(p) = (1 - e log 
PS 

satisfies the LBC and VSE with 

1-6 
P a -  * 

RTS 
( 4 . 3 8 )  

Clearly we have asymptotically 

2 
OSPS 6 )  (1 - E log -E ) 6 / E  ( 4 . 3 9 )  

PS 
X(p> - ; ( - - 

RTS 
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S O  x ( p )  + m as p + 0. However, this X is square-integrable because 

1 
[ (- log x)~''' dx - I'(2h e + 1) , (4.40) 
0 

where r is the gamma-function, which is finite. Thus X is an unbounded 

eigenfunction. In fact, since X has no zeros, p given by ( 4 . 3 8 )  is the 

lowest eigenvalue. 
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5. Concluding remarks 

In this article we have presented an analysis of the vertical 

structure equation for quite arbitrary thermal profiles, using classical 

techniques for singular Sturm-Liouville problems. We have argued that the 

vertical structure equation is assuredly meaningful only for bounded 

atmospheres because the primitive equations from which it is derived apply 

only to bounded, in fact shallow atmospheres, owing to the traditional 

shallowness approximations. For bounded atmospheres we have shown that the 

spectrum of the vertical structure equation is always totally discrete, that 

the barotropic equivalent depth H corresponding to the lowest eigenvalue 

satisfies the inequality RTs/g < Ho < dE/g independently of the thermal 

profile, that the eigenfunctions are all bounded but have unbounded first 

derivatives, and that any one of a number of upper boundary conditions, 

including conditions which follow from requiring mass or energy conservation 

in the linearized primitive equations, are equivalent and well posed. These 

results are in stark contrast to the situation for unbounded atmospheres, 

for which we have shown that typically the spectrum is partly continuous and 

the eigenfunctions, if any, are square-integrable but unbounded. 

0 

The primitive equations, with the traditional shallowness approxima- 

tions, are only a model of the atmosphere. Our results pertain to this 

model and not necessarily to any real atmosphere. Under the model 

assumptions there i s  a vertical structure equation and its spectrum is 

totally discrete. A primitive equation system without shallowness 

approximations would be a more realistic model of the atmosphere. It will 

be interesting to determine whether such a model has a vertical structure 

equation and, if s o ,  the extent to which results on the spectrum of and 

boundary conditions for the classical vertical structure equation carry 

over. These issues will be studied in a forthcoming paper. Work OR 

numerical treatment of the vertical structure equation and the primitive 
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equations themselves, in light of the equivalent boundary conditions of 

Theorem 2, is also underway. 
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